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Slosh dynamics of inviscid fluids in two-dimensional tanks
of various geometry using finite element method
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SUMMARY

This paper brings into focus some of the interesting effects arising from the motion of the liquid free
surface due to sloshing in partially filled containers of several geometrical shapes in two dimensions. The
slosh characteristics that include frequencies, free surface profiles and the hydrodynamic pressure over the
container walls have been reported in this study. The equations of motion of the fluid, considered inviscid,
are expressed in terms of the pressure variable alone. It is assumed that the frequency of the exciting
oscillation is not in the immediate neighborhood of the natural slosh frequency, so that the slope of the
free surface is small. Simple harmonic oscillation and earthquake excitations are used as the prescribed
boundary conditions. A finite difference-based iterative time-stepping technique is employed to advance
the solution in the time domain. The paper presents numerical solutions for rectangular, vertically mounted
annular cylindrical, trapezoidal and horizontal circular cylindrical containers. Numerical results obtained
are compared with the available existing solutions to validate the code developed. The parametric study of
the slosh dynamic systems shows the importance of the nature of excitation, fluid height and the geometry
of the container. Copyright q 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Sloshing is a fascinating physical phenomenon characterized by the oscillation of the unrestrained
free surface of the liquid in a partially filled container due to external excitation. This phenomenon
is of great engineering importance and is associated with several engineering applications, as
exemplified by fuel sloshing in liquid propellant launch vehicles, oil oscillation in large storage
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Figure 1. Rectangular tank and its boundaries.

Figure 2. Trapezoidal tank and its boundaries.

tanks, water oscillation in a reservoir and sloshing in the nuclear fuel storage pool due to earthquake
and similar other situations. The problem is generally nonlinear, even if the governing equations
of the fluid motion is linearized, in the sense that the free surface boundary condition is nonlinear
as well as the position of the free surface is not known a priori. In spite of that the complete
linearization of the system in which the free surface boundary condition is linearized and satisfied
on the undisturbed free surface can give satisfactory results in many cases, such as the interaction
of small structural motions with acoustic waves in fluids (acoustoelastic fluid–structure interaction
model). Although many researchers, References [1–19] amongst others, have accomplished nonlin-
ear simulation successfully, there are numerous successful applications of the linearized theory in
the open literature. Exhaustive surveys on both the formulations are included in References [6, 10].
The literature reports a variety of analytical and numerical techniques for formulating linear slosh
models for simple rigid and elastic geometries [6, 10, 17, 18, 20–42]. All linear analyses share a
common presumption that the disturbance of the free surface is small in magnitude in comparison
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Figure 3. Annular cylindrical configuration with a schematic mesh.

Figure 4. Circular container with fluid boundary definition and schematic mesh.
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Table I. Slosh frequencies (rad/s) in the rectangular container.

Elements per unit length First mode Second mode Third mode

16 5.562 7.921 9.763
25 5.550 7.870 9.725
Stoker [20] 5.541 7.850 9.615

to the liquid depth and the wavelength so that the free surface conditions may be linearized. This
has the inherent advantage that the free surface boundary is fixed in time, which simplifies the
numerical solution procedure considerably.

Both the linear and nonlinear theories mainly practice two formulations. For liquid sloshing
in an elastic container, the structural displacements are almost universal choice as the unknowns
for the structure domain. For the fluid, the unknowns are either the displacements, or a force-like
quantity, such as the displacement or velocity potential or the pressure. The sloshing response of
the fluid–structure system is found to be very sensitive to the characteristics of the ground motion
and configuration of the system. Since the earthquakes are unpreventable and unpredictable the
only course open to the engineers is to design and built the fluid–structure system so that the
loss of property and life can be minimized. For ground excitation dominated by low-frequency
contents, the sloshing response increases significantly and the contribution of the higher sloshing
modes increases [34, 35]. Since the pioneering works of Dodge et al. [1], Miles [21], Bauer [23],
Abramson [26] and Housner [27], many research groups have concentrated their investigations on
the seismic behaviour of the liquid containers and on the earthquake resistant design to understand
the dynamic behaviour of the liquid storage tanks and to provide proper design codes. In spite
of the continuous efforts to enhance the performance of liquid containers against seismic loading,
many liquid tanks have been severely damaged in major earthquakes all over the world. According
to field reports, liquid filled containers are mainly damaged either by excessive axial compression
due to overall bending of the containers or by sloshing of the contained liquid with insufficient
freeboard between the liquid surface and the tank roof.

While studies on slosh dynamics, both linear and nonlinear, in rectangular and vertically mounted
cylindrical tanks are abundant in the open literature, similar studies on trapezoidal and horizontally
mounted cylindrical tanks are quite rare. Amongst the few reported studies on trapezoidal and
horizontal cylindrical tanks, Bauer [25] and Barnyak [36] have computed sloshing frequencies in
a trapezoidal and horizontal cylindrical tanks, respectively. Ortiz and Barhorst [8] have reported a
nonlinear boundary element analysis of liquid sloshing in a horizontally mounted circular cylindrical
tank. This study presents a numerical method for the analysis of slosh dynamics in rigid storage
containers of various geometrical shapes, including trapezoidal and horizontally mounted circular
cylindrical tanks in particular, using linearized pressure-based finite element formulation. The
characteristics of sloshing behaviour and forced response characteristics have been studied in this
paper. In practical applications, one can obtain an approximate solution of the three-dimensional
sloshing response from the results of two-dimensional analysis if the third dimension of the cylinder
is large. So a two-dimensional analysis will provide an acceptable solution for partially filled long
cylinder mounted horizontally.

The fluid domain is discretized using 4-noded quadrilateral elements with pressure as the degree
of freedom. However, a layer of triangular elements is employed around the centre of a horizontal
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Figure 5. Time histories of the sloshing wave for the rectangular container
subject to sinusoidal base excitation.

Figure 6. EL Centro earthquake acceleration record (EW component).

circular cylindrical tank. The problem is formulated using the Galerkin principle, which provides
the basis for the present spatial discretization. A finite difference-based iterative time-stepping
technique is employed to advance the solution in the time domain. Numerical results for the
rigid containers are compared with the available existing solutions to assess the accuracy of the
developed code. The characteristics of slosh displacement and the hydrodynamic pressure over the
container walls for a prescribed earthquake excitation have been reported for containers of various
practical geometric shapes.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1625–1651
DOI: 10.1002/fld



1630 S. MITRA, P. P. UPADHYAY AND K. P. SINHAMAHAPATRA

Figure 7. Time histories of the sloshing wave for the rectangular container subject to EW
component of EL Centro earthquake.

Table II. Slosh frequencies (Hz) in the annular containers.

Annular cylindrical Model 1

Mode Aslam et al. [28] Pal et al. [18] Present FEM

M = 1 0.70 0.71 0.74
M = 2 3.20 3.30 3.24
M = 3 4.50 4.58 4.56
M = 4 5.50 5.67 5.58

Annular cylindrical Model 2

Aslam et al. [28] Pal et al. [18] Present FEM

M = 1 0.90 0.89 0.92
M = 2 2.30 2.29 2.34
M = 3 3.20 3.11 3.26
M = 4 3.90 3.87 3.98

Table III. Peak sloshing displacements (m) in the annular containers.

Model 1
Amplitude of

Frequency (Hz) acceleration (g) Aslam et al. [28] Pal et al. [18] Present FEM

1.20 0.0312 0.004572 0.004688 0.004692
3.70 0.0742 0.006019 0.006179 0.006059

Model 2

Aslam et al. [28] Pal et al. [18] Present FEM

1. 20 0.0312 0.008153 0.007944 0.008263
3.70 0.0742 0.005105 0.005276 0.005150
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Figure 8. Free surface sloshing response at outer wall of annular cylindrical Model 1 tank under sinusoidal
excitation with amplitude 0.0742g and frequency 3.7Hz. (a) Sloshing amplitude variation and (b) spectral

analysis of slosh wave amplitude.

GOVERNING EQUATIONS AND FORMULATION

The linearized governing equation for an inviscid, compressible, irrotational flow in terms of excess
pressure variable p(x, z, t) is the well-known wave equation, written as

∇2 p(x, z, t) = 1

c2
p̈(x, z, t) in � (1)

where � is the fluid domain.
The pressure formulation has certain advantages over the displacement or velocity potential-

based formulations. Unlike the displacement formulation, the number of unknowns in this formu-
lation is only one per node (pressure), which results in considerable saving of computer storage
and time, particularly for large three-dimensional problems. In addition, the pressure field at the
structure–fluid interface is directly obtained unlike displacement and potential formulations where
the pressure has to be calculated from the velocity or displacements or their potential. This would
be particularly advantageous in solving a fluid–structure interaction problem where pressure on
the interface needs to be computed at each time step. Besides these major advantages, the com-
pressibility comes in a natural way in a pressure formulation and can be retained without incurring
considerable additional efforts and costs. Usually, compressibility proves to be negligible in the
general linearized theory of waves on a homogeneous body of liquid. This is also true for all the
examples presented in this paper. However, in many practical cases as in the waste storage tanks
and spent fuel reprocessing tanks in nuclear facilities, the fluid is inhomogeneous and the density
variation is non-uniform but considerable. For the fluid–structure interaction problems, Muller [31]
has shown mathematically that eigenvalues of a structure in contact with a compressible fluid are
lower than the corresponding eigenvalues if the fluid were incompressible. Muller [31], further,
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Figure 9. Hydrodynamic pressure variations along a wall of the trapezoidal tank due to a sinusoidal load.

presented a numerical example to show the difference in frequencies considering both air and
water as the working fluid. The difference is rather small in the case of water but, perhaps, not
negligible.

The fluid boundary, in general, is composed of three types of boundaries. These are solid–
liquid interface boundary, free surface boundary, non-reflecting or radiating-type boundary. For
liquid sloshing in a container the radiating-type boundary is neglected. Figures 1–4 show different
container configurations considered, the relevant boundaries, nomenclatures and definitions. The
appropriate boundary conditions for these boundaries are as follows:

1. Solid–liquid interface boundary (BI): Continuity of normal displacement at the solid–liquid
interface leads to the following relation for the linearized problem:

�p
�n

=−�fün on BI (2)

2. Free surface boundary (Bf): The linearized wave theory facilitates the satisfaction of the
free surface boundary condition on the undisturbed free surface. The free surface boundary
conditions are linearized to give

p= �fgun (3a)

⇒ �p
�n

=− p̈

g
on Bf (3b)
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Figure 10. Slosh amplitude at both ends of free surface of the trapezoidal tank due to a sinusoidal load.

3. Bottom boundary (Bb): The bottom boundary is considered to be rigid, so that at the bottom
wall of the tank

�p
�n

= 0 on Bb (4)

In the above relations �f, ün and g are the fluid density, normal acceleration of the container wall
at the structure–fluid interface and acceleration due to gravity. For a rigid container, the structural
acceleration ün is identical to the prescribed ground acceleration. The parameter c in Equation (1)
is the speed of acoustic wave propagation in the fluid. In all the computations reported in this
paper c is taken as 1480m/s, the average speed of sound in water.

Applying the divergence theorem to the residual form of the governing differential equation for
the liquid and substituting Equations (2)–(4) we obtain

∫
�
N

T

[
�2 p
�x2

+�2 p
�z2

− 1

c2
�2 p
�t2

]
d�−

∫
BI
N

T
[
�p
�n

+�fün

]
d�−

∫
Bf
N

T
[
�p
�n

+ p̈

g

]
d�= 0 (5)
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Figure 11. Pressure responses of trapezoidal tank of various C/R ratios due to sinusoidal load.

in which B = BI+ Bf+ Bb is as defined in Figures 1–4. As there is no bottom boundary in the case
of circular domain (Figure 4) the total boundary consists of interface and free surface boundaries
only. The use of Green–Gauss theorem and Galerkin finite element approximation reduces the
above equation to the following form:

Mf p̈ + Kf p= F (6)

The parameter Mf in Equation (6) is the mass matrix for a fluid element and is given by

(Mf)i j = 1

c2

∫
�
NT
fi Nf j d� + 1

g

∫
Bf
NT
fi Nf j d� (7)

Similarly, Kf, the stiffness matrix for a fluid element, is given by

(Kf)i j =
∫

�

(
�Nfi

�x

�Nf j

�x
+ �Nfi

�z

�Nf j

�z

)
d� (8)
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Figure 12. Pressure responses for different h/C ratios.

Figure 13. Free surface profiles at 1, 2, 5, 6, 9 and 11 s due to the sinusoidal load.

The load vector, F , is given by

Fi =
∫
BI
NT
fi �fün d� (9)
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Figure 14. Transient pressure variation due to El Centro earthquake.

For an incompressible formulation the first term on the right-hand side in Equation (7) vanishes.
The discretized governing equation (6) is solved using a finite difference-based time-stepping
technique, namely, Newmark’s constant-average acceleration method [37]. The solution is advanced
assuming an initial undisturbed condition (zero excess pressure). At each time step the set of
algebraic equations are solved using a skyline LDLT solver.

FLUID IN AXISYMMETRIC CONTAINERS

The horizontal ground motion will excite only the antisymmetric modes of sloshing in an axisym-
metric tank if linearized free surface condition is used. The pressure in this case may be expressed
in the form of a Fourier cosine series. The fluid element is essentially a ring element and the
element stiffness matrix may be expressed as

(Km)i j =
∫ 2�

0
cos2 �R(�)(Kf)i j d� (10)
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Figure 15. Transient slosh wave height.

where R is the radius vector of the element under consideration and (Kf)i j is the stiffness matrix
of the non-axisymmetric fluid element as obtained earlier. Similarly, the mass matrix and the load
vector for an axisymmetric element may be obtained from their non-axisymmetric counterpart.

FREE SURFACE POSITION

In the linearized analysis the free surface boundary conditions are satisfied on the initial undisturbed
position. Hence, it is not essential to update the free surface and computational mesh at each time
step. However, it is necessary to compute the displacements of the surface nodes to plot the free
surface position. In the present analysis, Equation (3a) is used directly to deduce the free surface
displacement for all vertical walled containers. When the container walls are not vertical, as in
the cases of trapezoidal and horizontal cylindrical containers, the free surface nodal displacements
are computed from the velocity components of the nodal fluid particles. The components of the
acceleration of the fluid particles are obtained from the following inviscid flow equations:

�fv̇i + p,i = 0, i = x, z (11)

where v̇i is the acceleration of the fluid particle. The velocity components of the fluid particles
are evaluated from the known values of acceleration at any instant of time using simple time
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Figure 16. Motion with zero damping (displacement amplitude A=−0.01m,� = 5 rad/s).

integration scheme given by

vt = vt−�t + v̇t�t (12)

The nodal displacements are computed from the velocities in a similar manner. Finally, if the
end nodes are found to be off the walls, they are moved along the normal to put them on the
walls.
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Figure 17. Motion with zero damping (A=−0.01m,� = 5 rad/s) (Courtesy of Ortiz and Barhorst [8]).

Table IV. Sloshing frequencies (Hz) of a 50% filled horizontal cylindrical tank of radius 0.5m.

First mode ( f1) Second mode ( f2) Third mode ( f3) Fourth mode ( f4) Fifth mode ( f5)

0.8205 1.2274 1.5198 1.7605 1.9712

NUMERICAL EXAMPLES AND DISCUSSION

Rectangular containers

The benchmark problem of liquid sloshing inside a 1.0m wide rectangular rigid container with
liquid domain size of 1.0m× 1.0m is attempted to validate the developed code and to assess the
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Figure 18. Time histories of the wave height at both the walls.

accuracy of the numerical method adopted. The computed results presented in Table I for the first
three sloshing frequencies of the liquid (water) inside the rectangular container are found to match
closely with the solution due to Stoker [20].

Typical time response of the free surface wave height for the same rectangular container at the
left wall is shown in Figure 5 for the situation when the amplitude and frequency of the applied
harmonic (sine) base acceleration are 0.02m/s2 and 5.5 rad/s, respectively, i.e. ün = 0.02 sin 5.5t .
The response shown in the figure appears to match closely with that due to Washizu et al. [4]. Both
incompressible and compressible solutions are presented in the figure and the figure shows, as
expected, that the two solutions are practically identical for this case. The effect of close proximity
between the fundamental sloshing frequency and the excitation frequency is noticeable in the
increase in amplitude of the sloshing waves.

The rectangular configuration (container width 1.0m with liquid depth of 1.0m) studied for
the validation purpose has been further investigated for the slosh dynamics due to an earthquake
load, namely the EW component of the EL Centro earthquake (Figure 6). Figure 7 represents the
surface wave amplitude at the right wall of the container. It is clearly observed from the response
to a strong earthquake motion, like the EL Centro earthquake, that the maximum hydrodynamic
pressure and the slosh wave amplitude are amplified markedly compared with the response to the
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Figure 19. Hydrodynamic pressure distribution at different instants (R = 0.5m, half fill).

sinusoidal excitation given earlier. However, considering the fact that the peak ground acceleration
for this earthquake is nearly 100 times, the rise in hydrodynamic pressure is rather small since the
excitation and sloshing frequencies are quite apart in this case.

Upright annular cylindrical containers

The liquid sloshing inside a vertically mounted annular cylindrical container is also considered
to validate the code. Two containers have been used in the present study. These are designated
as Model 1 having outer radius 0.2286m, inner radius 0.1524m, depth of liquid 0.0762m and
Model 2 having outer radius 0.2286m, inner radius 0.0762m and depth of liquid 0.0762m. The
numerical results presented in Table II for the first four sloshing frequencies are found to match
closely with the velocity potential-based finite element method (FEM) solution due to Pal et al.
[18] and the experimental results due to Aslam et al. [28]. In Table III the computed values of the
maximum slosh displacement at the free surface for two different harmonic sinusoidal excitations
are presented. The computed slosh displacements are found to match quite satisfactorily with other
solutions for both the excitations. The slosh wave height variation with time at the outer wall of
the tank (Model 1) subjected to a harmonic excitation of amplitude 0.0742g and frequency of
3.7Hz (ün = 0.0742g sin 23.2478t) is shown in Figure 8, which clearly reveals a time interference
of two waves having small difference in their frequencies. An FFT spectrum analysis shows that
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Figure 20. (a) Pressure response on the free surface of circular container due to sinusoidal load and
(b) spectrum analysis of the free surface pressure response.

the frequencies contributing to the beating behaviour are 3.7Hz (excitation frequency) and 3.2Hz
(second mode natural frequency) and both of them have almost equal contribution.

Trapezoidal containers

Some studies have also been carried out for trapezoidal containers with varying C/R and h/C
ratios (Figure 2) due to sinusoidal and earthquake excitations. Figure 9 presents the hydrodynamic
pressure distribution along the wall of a trapezoidal tank with C/R ratio of 0.894 at various instants
due to the sinusoidal load of amplitude 1.0m/s2 and frequency of 0.4424Hz. The depth of liquid
in the tank is taken to be 4.0m with h/C = 0.667. The fundamental sloshing frequency for this
configuration is computed to be 2.39 rad/s. As mentioned above, the harmonic excitation is taken
as ün = 1.0 sin 2.78t . The slosh response in the form of slosh wave height variation with time at
the left and right intersection points between the container walls and the free surface is shown in
Figure 10. It is observed that for the container with C/R = 0.894, h/C = 0.667 and h = 4.0m,
the peak slosh wave amplitude increases during the first 10 s and then decreases for the next
5 s and then continues to increase again till the computation is terminated at 20 s from the start.
Figure 11 presents the transient pressure variation at the left wall intersection of a number of
trapezoidal containers subjected to the same harmonic excitation, namely ün = 1.0 sin 2.78t . In
each of these cases, the depth of liquid is fixed at 4.0m and C and R are changed in such a way
that the liquid volume too remains unchanged. It is evident from Figure 11 that the hydrodynamic
pressure and, hence, the slosh height decreases markedly as the ratio C/R increases. The large
difference with the rectangular container (C/R = 0) is worth mentioning. This significant reduction
in the slosh amplitude and pressure can be attributed to the fact that only a component of the load
is responsible for the sloshing in a trapezoidal container. Figure 12 shows the pressure variation
at the left extreme of the free surface for varying liquid depths in a fixed container. Liquid depths
of 1.0, 2.0, 3.0 and 4.0m so that the h/C ratios are 0.333, 0.5, 0.6 and 0.666, respectively, are
considered for this study. The effect of liquid depth on the sloshing response is found to be quite
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Figure 21. Pressure response on the free surface at the right wall due to NS
component of El Centro earthquake load.

complex. The phenomenon of interference in time is noticeable for all the cases except the lowest
depth. The difference in the interfering frequencies appears to be decreasing with increasing h
and h/C . For the lowest depth case, the difference seems to be so large that the interference is
practically absent. This case also shows distinctly larger period of oscillation. The free surface
profiles of the container with C/R = 0.486 and h = 4.0m at different time instants are shown in
Figure 13.

The effect of earthquake excitation on the sloshing amplitude and the hydrodynamic pressure in
a trapezoidal container is studied with a prescribed ground motion corresponding to the NS com-
ponent of the El Centro earthquake. The tank configuration considered in this case is characterized
by C/R = 1.2, h/C = 0.583 and the liquid depth h = 3.5m. Figures 14 and 15 show the transient
pressure variation and the surface wave amplitudes, respectively. The relatively higher values of
the peak hydrodynamic pressure and sloshing amplitude are expected since the excitation contains
considerably larger peaks. However, the maximum free surface displacement is within 20% of the
undisturbed liquid depth and the linearized theory would be quite acceptable.
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Figure 22. Wave height at the left wall on the free surface due to NS
component of El Centro earthquake load.

Circular containers (horizontal cylindrical containers)

The present numerical solution for a half-filled horizontal cylindrical tank of radius 0.5m subjected
to a sinusoidal excitation un = A sin(�t) with displacement amplitude A=−0.01m and frequency
�= 5 rad/s is compared with the nonlinear velocity potential-based boundary element solution due
to Ortiz and Barhorst [8]. The time step in the present computation is taken as 0.01 s for advancing
the solution. The fluid domain is discretized using 3965 four-noded quadrilateral elements and 72
triangular elements around the centre. Figure 16 shows plots of the free surface position for the
half-filled container at different instants for the prescribed excitation. The corresponding solution
due to Ortiz and Barhorst [8] is reproduced from Reference [8] in Figure 17. The results are
found to be in excellent agreement up to 8.0 s from the start of the motion. Beyond this time, some
discrepancies in the free surface position are observed. These discrepancies may be attributed to the
limitations of the present linear formulation. Ortiz and Barhorst [8] predicted unstable response
of the system beyond 9.85 s but the present technique is found to be capable of capturing the
slosh response beyond that time. Although the FEMs are usually more robust than the boundary
element method employed by Ortiz and Barhorst [8], the nonlinearity may have significant effect
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Figure 23. Motion due to NS component of El Centro earthquake at 0, 3, 4.2, 5.4,
8.2, 9.6, 11.2, 11.8 and 14.2 s.

as the displacements tend to be quite large during this period. As evident from the system natural
frequencies presented in Table IV, the fundamental sloshing frequency in this case is very close to
the exciting frequency and, consequently, the sloshing amplitudes are expected to be large enough.
In spite of that, the predictions seem to be quite close to the nonlinear solution up to 8.0 s.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1625–1651
DOI: 10.1002/fld



1646 S. MITRA, P. P. UPADHYAY AND K. P. SINHAMAHAPATRA

Figure 24. Pressure history of the 75% filled container due to the NS component of El Centro earthquake.

Figure 25. Free surface profiles at 1, 3, 4, 8, 10, 12, 16 and 18 s due to sinusoidal load (75% fill).

Transient slosh wave height variation on the free surface position at both the walls of a half-filled
horizontal circular cylindrical tank of radius 0.5m is plotted in Figure 18. The excitation considered
in this case is given as un = A sin(�t) with A= −0.01m and � = 5.0 rad/s. The corresponding
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Figure 26. Transient pressure variation for varying liquid volumes.

hydrodynamic pressure distributions on the wall at different instants are shown in Figure 19. The
angle � is measured from the Z -axis (Figure 4) in clockwise direction for every node on the wall.
The free surface pressure variation at the left intersection, which is similar to the slosh height
variation there, is shown in Figure 20(a) for the first 100 s. The characteristic beating behaviour in
response over a large time is due to the contributing frequencies of 5.0 rad/s (exciting frequency)
and 5.2 rad/s (natural sloshing frequency). The respective contributions of the two frequencies are
shown in the spectrum analysis in Figure 20(b). As mentioned earlier (Table IV), the fundamental
sloshing frequency in this case is quite close to the excitation frequency and the slosh wave
amplitudes and the hydrodynamic pressure values are quite large. Therefore, this example serves
as a critical test case for the code. It is found from the figure, which clearly shows an interference,
that the peak pressure and wave amplitude rise during the first 20 s to considerably large values
and the free surface displacement to the undisturbed liquid depth ratio is more than 0.5 during
10–20 s.

Subsequently, the slosh dynamic response of the above tank system to the NS component of
the El Centro earthquake has been taken up for further investigations. The time variations of the
pressure and the slosh wave height on the free surface are presented in the Figures 21 and 22. The
hydrodynamic pressure in the figure (Figure 21) is taken at the intersection between the right wall
and the free surface while the slosh height (Figure 22) is taken at the intersection point between

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1625–1651
DOI: 10.1002/fld



1648 S. MITRA, P. P. UPADHYAY AND K. P. SINHAMAHAPATRA

Figure 27. Hydrodynamic pressure distribution.

the left wall and the free surface. It is understood from the figures that the maximum pressure
and slosh height occur between 19 and 20 s. The peak pressure in this case is somewhat smaller
than that of the sinusoidal excitation considered above. This difference may be attributed to the
difference in the excitation frequencies. The free surface profiles at a number of instances are
presented in Figure 23. Transient pressure variation on the free surface of the 75% filled circular
container of radius 0.5m subjected to the NS component of the El Centro earthquake is presented
in Figure 24. The figure clearly indicates a marked reduction in the peak hydrodynamic pressure
and, consequently, in the sloshing amplitude.

Figure 25 depicts the free surface profiles at different instants for the circular container when
it is 75% filled due to the sinusoidal excitation used for the half-filled case. It is found that the
maximum free surface displacement is appreciably lower than that of the half-filled container.
Figure 26 presents a comparison of free surface pressure variation in 62.6, 85.8 and 94.8% filled
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circular tanks due to the same sinusoidal excitation. With the increase in the liquid depth or volume
in the container, noticeable reduction in the free surface pressure is observed. This is, probably, due
to the increased sloshing frequency of the system and consequent difference with the excitation
frequency. As an example, the fundamental sloshing frequency of the 75% filled container is found
to be 1.044Hz compared with 0.8205Hz of the half-filled container and is far removed from the
excitation frequency of 0.7958Hz. Figure 27 presents the hydrodynamic pressure variations along
the wall at 4, 8, 10 and 16 s for the 94.8% filled container. The angle � is measured from the Z -axis
(Figure 4) in clockwise direction for every node on the wall.

CONCLUSION

A pressure-based Galerkin finite element code that can handle liquid sloshing analysis for a free
lateral vibration of ground-supported containers of various practical shapes has been developed.
The slosh dynamics in long horizontal circular cylindrical and trapezoidal containers, which are
relatively scarce in the open literature, is given special attention in this study. The analysis is
restricted to linear problems in the sense that only small amplitude waves have been assumed.
The method has been applied to a number of problems and some typical results are presented that
assess the accuracy and applicability of the method.

Trapezoidal containers have an advantage of reducing slosh when compared with the rectangular
containers. With an increase in the inclination of the slant walls with respect to the vertical, the
slosh wave amplitude and pressure reduce markedly for a fixed liquid height and volume. For
more than 50% filled horizontal circular cylindrical containers, it is observed, the slosh response
decreases considerably with an increase in the liquid height.

The developed computer code is useful in predicting the sloshing displacement and the pressure
developed in a liquid filled container due to sloshing. The predictions of the free surface displace-
ment and the hydrodynamic pressure on the wall due to sloshing are effective in deciding the level
of liquid in tanks, fixing the level of an outlet pipe in a boiler suppression pool and in overall
design of the liquid filled containers.
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